M1.(a) uniform width peaks \checkmark (accurate to within \pm one division) peaks need to be rounded ie not triangular the minima do not need to be exactly zero
a collection of peaks of constant amplitude or amplitude decreasing away from central peak \checkmark
pattern must look symmetrical by eye
condone errors towards the edge of the pattern
double width centre peak total mark $=0$
(b) (i) constant / fixed / same phase relationship / difference (and same frequency / wavelength) \checkmark
in phase is not enough for the mark
(ii) single slit acts as a point / single source diffracting / spreading light to both slits OR
the path lengths between the single slit and the double slits are constant / the same / fixed \checkmark
(iii) superposition of waves from two slits phrase 'constructive superposition' $=2$ marks diffraction (patterns) from both slits overlap (and interfere constructively) \checkmark (this mark may come from a diagram)
constructive interference / reinforcement (at bright fringe) peaks meet peaks / troughs meet troughs \checkmark (any reference to antinode will lose this mark)
waves from each slit meet in phase
OR path difference $=n \lambda$
(c) (i) $D=\frac{\bar{L}}{\lambda}=\frac{405 \times 10^{-9}}{} \quad$ do not penalise any incorrect powers

Page 2

of ten for this mark

$=0.5(\mathrm{~m}) \checkmark(0.4938 \mathrm{~m})$
numbers can be substituted into the equation using any form note 0.50 m is wrong because of a rounding error full marks available for answer only
(ii) fringes further apart or fringe / pattern has a greater width / is wider ignore any incorrect reasoning changes to green is not enough for mark
(iii) increase $D \checkmark$
measure across more than 2 maxima
several / few implies more than two
added detail which includes \checkmark explaining that when D is increased then w increases Or
repeat the reading with a changed distance D or using different numbers of fringes or measuring across different pairs of (adjacent) fringes Or
explaining how either of the first two points improves / reduces the percentage error. no mark for darkened room

M2.(a) 2.9\%
Allow 3\%
(b) $\frac{1}{3.5 \times 10^{3}}$ seen \checkmark
0.29 mm or $2.9 \times 10^{-4} \mathrm{~m} \checkmark$ must see 2 sf only
(c) $\pm 0.01 \mathrm{~mm} \checkmark$
(d) Clear indication that at least 10 spaces have been measured to give a spacing $=5.24 \mathrm{~mm} \checkmark$
spacing from at least 10 spaces
Allow answer within range ± 0.05
(e) Substitution in $d \sin \theta=n \lambda \checkmark$

The 25 spaces could appear here as n with $\sin \theta$ as 0.135 / 2.5

```
d=0.300 x 10.3 m so
number of lines = 3.34 x10 \
    Condone error in powers of }10\mathrm{ in substitution
    Allow ecf from 1-4 value of spacing
```

(f) Calculates \% difference (4.6\%) \checkmark
and makes judgement concerning agreement \checkmark
Allow ecf from 1-5 value
(g) care not to look directly into the laser beam \checkmark OR care to avoid possibility of reflected laser beam OR warning signs that laser is in use outside the laboratory \checkmark ANY ONE

M4.(a) Suitable experiment eg diffraction through a door / out of a pipe
(d) Sound from gun is a mixture of frequencies.

Alternative for $1^{\text {st }}$ mark '(so speed is independent of frequency) the sound of the gun is similar when close and far away’

All the sound reaches observer at the same time,
(e) More accurate, as it is closer to the accepted value.
(f) When $\theta=0{ }^{\circ} \mathrm{C} \quad \mathrm{c}=331.29 \mathrm{~m} \mathrm{~s}^{-1}$

Therefore

$$
331.29=k \sqrt{ } 273.15 \checkmark
$$

$\mathrm{k}=20.045$

(g) The method and value are published

 other scientists repeat the experiment using the same methodM5.D

M6.A

M7.(a) one of:
(spectral) analysis of light from stars
(analyse) composition of stars
chemical analysis
measuring red shift \backslash rotation of stars
insufficient answers:
'observe spectra', 'spectroscopy', 'view absorption \emission spectrum', 'compare spectra', 'look at light from stars'.

Allow : measuring wavelength or frequency from a named source of light
Allow any other legitimate application that specifies the source of light. E.g.
absorbtion \emission spectra in stars, 'observe spectra of materials'
(b) (i) first order beam
first order spectrum
first order image
\checkmark
Allow ' $n=1$ ', ' 1 ', 'one', $1^{\text {st }}$
(ii) the light at A will appear white (and at B there will be a spectrum) OR greater intensity at A
(c) $\quad\left(d=1 /\right.$ (lines per $\left.\mathrm{mm} \times 10^{3}\right)$
$=6.757 \times 10^{-7}(\mathrm{~m})$ OR $6.757 \times 10^{-4}(\mathrm{~mm}) \checkmark$
$(\mathrm{n} \lambda=d \sin \theta)$
$=6.757 \times 10^{-7} \times \sin 51.0 \quad \checkmark$ ecf only for :

- incorrect power of ten in otherwise correct calculation of d
- use of $d=1480,1.48,14.8$ (etc)
- from incorrect order in bii
$=5.25 \times 10^{-7}(\mathrm{~m}) \checkmark$ ecf only for :
- incorrect power of ten in otherwise correct d
- from incorrect order in bii

Some working required for full marks. Correct answer only gets 2
Power of 10 error in d gets max 2
For use of d in mm , answer $=$
5.25×10^{-4} gets max 2
$n=2$ gets max 2 unless ecf from bii
use of $d=1480$ yields wavelength of 1150 m
(d) $\mathrm{n}=\mathrm{d}(\sin 90) / \lambda \quad \mathrm{OR} \mathrm{n}=6.757 \times 10^{-7} / 5.25 \times 10^{-7} \checkmark$ ecf both numbers from c
$=1.29$ so no more beams observed \checkmark or answer consistent with their working

OR

$2=\mathrm{d}(\sin \theta) / \lambda \mathrm{OR} \sin \theta=2 \times 5.25 \times 10^{-7} / 6.757 \times 10^{-7} \checkmark$ ecf both numbers from c
$\sin \theta=1.55$ (so not possible to calculate angle) so no more beams \checkmark
OR $\sin ^{-1}(2 \times($ their $\lambda /$ their $d)) ~ \checkmark$
(not possible to calculate) so no more beams \checkmark ecf
Accept 1.28, 1.3
Second line gets both marks
Conclusion consistent with working

