M1.(a) uniform width peaks ✓ (accurate to within ± one division) peaks need to be rounded ie not triangular the minima do not need to be exactly zero

a collection of peaks of constant amplitude or amplitude decreasing away from central peak \checkmark

pattern must look symmetrical by eye condone errors towards the edge of the pattern double width centre peak total mark = 0

2

(b) (i) constant / fixed / same phase relationship / difference (and same frequency / wavelength) ✓
 in phase is not enough for the mark

1

(ii) single slit acts as a point / single source diffracting / spreading light to <u>both slits</u> ✓
 OR the path lengths between the single slit and the double slits are constant / the same / fixed ✓

1

(iii) <u>superposition</u> of waves from two slits ✓ phrase 'constructive superposition' = 2 marks

diffraction (patterns) from both slits overlap (and interfere constructively) ✓ (this mark may come from a diagram)

constructive interference / reinforcement (at bright fringe) peaks meet peaks / troughs meet troughs ✓ (any reference to antinode will lose this mark)

waves from each slit meet in phase OR path difference = $n \lambda \checkmark$

4 max 3

(c) (i) $D = \frac{ws}{\lambda} = \frac{0.004 \times 5.010^{-5}}{405 \times 10^{-9}}$ \checkmark do not penalise any incorrect powers

of ten for this mark

= 0.5 (m) ✓ (0.4938 m)

numbers can be substituted into the equation using any form note 0.50 m is wrong because of a rounding error full marks available for answer only

 (ii) fringes further apart or fringe / pattern has a greater width / is wider ✓ ignore any incorrect reasoning changes to green is not enough for mark

(iii) increase D ✓
 measure across more than 2 maxima ✓
 several / few implies more than two

added detail which includes \checkmark explaining that when *D* is increased then *w* increases Or repeat the reading with a changed distance *D* or using different numbers of fringes or measuring across different pairs of (adjacent) fringes Or explaining how either of the first two points improves / reduces the percentage error.

no mark for darkened room

1

1

1

1

2

1

M2.(a) 2.9% ✓

Allow 3%

4

0.29 mm or 2.9 x 10^4 m \checkmark must see 2 sf only

(c) ± 0.01 mm ✓

PhysicsAndMathsTutor.com

(d)	Clear indication that at least 10 spaces have been measured to give a spacing = 5.24 mm ✓ spacing from at least 10 spaces Allow answer within range ±0.05	1
(e)	Substitution in $d \sin\theta = n\lambda \checkmark$ The 25 spaces could appear here as <i>n</i> with sin θ as 0.135 / 2.5	1
	<i>d</i> = 0.300 x 10 ³ m so number of lines = 3.34 x10 ³ ✓ <i>Condone error in powers of 10 in substitution</i> <i>Allow ecf from 1-4 value of spacing</i>	1
(f)	Calculates % difference (4.6%) ✓	1
	and makes judgement concerning agreement ✓ Allow ecf from 1-5 value	1
(g)	care not to look directly into the laser beam ✓ OR care to avoid possibility of reflected laser beam ✓ OR warning signs that laser is in use outside the laboratory ✓ ANY ONE	1 [10]

M3.C

M4.(a) Suitable experiment eg diffraction through a door / out of a pipe 🗸

- (b) Using c = d / t
 - t = 2 500 / 480 = 5.2 s ✓
- (c) (Measured time is difference between time taken by light and time taken by sound)

Calculation assumes that light takes no time to reach observer, ie speed is infinite \checkmark

Do not allow "could not know speed of light"

(d) Sound from gun is a mixture of frequencies. ✓ Alternative for 1st mark '(so speed is independent of frequency) the sound of the gun is similar when close and far away'

All the sound reaches observer at the same time, \checkmark

- (e) More accurate, as it is closer to the accepted value. \checkmark
- (f) When $\theta = 0 \,^{\circ}\text{C}$ c = 331.29 m s⁻¹

Therefore

331.29 = k $\sqrt{273.15}$ 🖌

1

1

1

1

1

1

1

1

	(g)	The method and value are published \checkmark	1
		other scientists repeat the experiment using the same method \checkmark	1 [10]
М5.	D		[1]
M6.	A		[1]
M7. (a)	(ana cher	of: ectral) analysis of light from stars alyse) composition of stars emical analysis asuring red shift \ rotation of stars 🖌	
		insufficient answers: 'observe spectra', 'spectroscopy', 'view absorption \ emission spectrum', 'compare spectra', 'look at light from stars'. <i>Allow : measuring wavelength or frequency from a <u>named</u> <u>source</u> of light <i>Allow any other legitimate application that specifies the</i> <i>source of light. E.g.</i> <i>absorbtion \ emission spectra in stars,</i> 'observe spectra of materials'</i>	1
	(b)	 (i) first order beam first order spectrum first order image ✓ Allow 'n = 1', '1', 'one', 1st 	1

- the light at A will appear white (and at B there will be a spectrum) OR greater intensity at A ✓
- (c) $(d = 1 / (\text{lines per mm} \times 10^3))$ = 6.757 × 10⁻⁷ (m) OR 6.757 × 10⁻⁴ (mm) \checkmark

 $(n\lambda = d \sin \theta)$ = 6.757 × 10⁻⁷ × sin 51.0 \checkmark ecf **only** for :

- incorrect power of ten in otherwise correct calculation of d
- use of d = 1480, 1.48, 14.8 (etc)
- from incorrect order in bii

= 5.25 × 10⁻⁷ (m) ✓ ecf **only** for :

- · incorrect power of ten in otherwise correct d
- from incorrect order in bii

Some working required for full marks. Correct answer only gets 2 Power of 10 error in d gets max 2 For use of d in mm, answer =

- 5.25 × 10^{-₄} gets max 2
- n = 2 gets max 2 unless ecf from bii
- use of d = 1480 yields wavelength of 1150m

1

(d) $n = d (sin90) / \lambda$ OR $n = 6.757 \times 10^{-7} / 5.25 \times 10^{-7} \checkmark$ ecf both numbers from c

= 1.29 so <u>no more</u> beams observed \checkmark or answer consistent with their working

OR

2 = d (sin θ) / λ OR sin θ = 2 × 5.25 × 10⁻⁷ / 6.757 × 10⁻⁷ \checkmark ecf both numbers from c

 $\sin\theta = 1.55$ (so not possible to calculate angle) so <u>no more</u> beams \checkmark

OR sin⁻¹(2 × (their λ / their d)) ✓ (not possible to calculate) so <u>no more</u> beams ✓ ecf *Accept 1.28, 1.3 Second line gets both marks*

Conclusion consistent with working

2